1. | EXECUTIVE SUMMARY |
1.1. | Introduction to Thermal Interface Materials (TIM) |
1.2. | Properties of Thermal Interface Materials |
1.3. | Thermal Conductivity Comparison of TIM Formats |
1.4. | Differences between thermal pads and grease |
1.5. | Advanced TIMs and Multi-Functional TIMs |
1.6. | Metal-Based TIM1 and TIM2 |
1.7. | TIM Area Forecast by Application: 2022-2034 (m2) |
1.8. | TIM Mass Forecast by Application: 2022-2034 (kg) |
1.9. | TIM Market Size Forecast by Application: 2022-2034 (US$ Millions) |
1.10. | TIM Mass Forecast for EV Batteries by TIM Form: 2021-2034 (kg) |
1.11. | TIM Mass Forecast for Data Centers By Component: 2022-2034 (kg) |
1.12. | TIM requirements for data center applications |
1.13. | TIM Market Size Forecast for ADAS by Component: 2020-2034 (US$ Millions) |
1.14. | Die Attach Area Forecast for Key Components Within ADAS Sensors: 2020-2034 (m2) |
1.15. | TIM requirements for ADAS components |
1.16. | TIM & Heat Spreader Market Size Forecast For Consumer Electronics: 2012-2034 (US$ Millions) |
1.17. | TIM Area Forecast for 5G Stations by Component: 2020-2034 (m2) |
1.18. | TIM Area Forecast for EV Power Electronics By Technology: 2021-2034 (m2) |
1.19. | Die-Attach Area Forecast for EV Power Electronics by Technology: 2021-2034 (m2) |
1.20. | Summary - Pros and Cons of TIM Fillers (1) |
1.21. | Summary - Pros and Cons of TIM Fillers (2) |
1.22. | Summary of TIM Fillers |
1.23. | TIM filler cost comparison |
2. | INTRODUCTION |
2.1. | Overview |
2.1.1. | Introduction to TIMs - (1) |
2.1.2. | Introduction to TIMs - (2) |
2.1.3. | Key Factors in System Level Performance |
2.1.4. | Thermal Conductivity vs Thermal Resistance |
2.2. | Comparison of Key Factors by TIM Form |
2.2.1. | Properties of Thermal Interface Materials |
2.2.2. | Comparisons of Price and Thermal Conductivity |
2.2.3. | Thermal Conductivity by TIM Format |
2.2.4. | Price Comparison of TIM Fillers |
2.2.5. | TIM Chemistry Comparison |
2.2.6. | 1. Gap Pads |
2.2.7. | SWOT - Gap Pads |
2.2.8. | 2. Thermal Gels/ Gap Fillers |
2.2.9. | SWOT - Thermal Gels/Gap Fillers |
2.2.10. | 3. Thermal Greases |
2.2.11. | SWOT - Thermal Greases |
2.2.12. | 4. Phase Change Materials (PCMs) |
2.2.13. | SWOT - Phase Change Materials (PCMs) |
2.2.14. | 5. Adhesive Tapes |
2.2.15. | SWOT - Adhesive Tapes and TCA |
2.2.16. | 6. Potting/Encapsulants |
2.2.17. | SWOT - Potting/Encapsulants |
2.3. | Advanced TIMs |
2.3.1. | Summary of Advanced TIMs |
2.3.2. | Introduction |
2.3.3. | Advanced TIMs: Introduction |
2.3.4. | Carbon-based TIMs Overview |
2.3.5. | Overview of Thermal Conductivity By Filler |
2.3.6. | Overview of Thermal Conductivity By Matrix |
2.4. | Carbon-based TIMs |
2.4.1. | Overview |
2.4.2. | Comparison of carbon-based TIMs (1) |
2.4.3. | Comparison of carbon-based TIMs (2) |
2.4.4. | 1. Graphite - Introduction |
2.4.5. | Graphite Sheets: Through-plane Limitations |
2.4.6. | Vertical Graphite with Additives |
2.4.7. | Graphite Sheets: Interfacing with Heat Source and Disrupting Alignment |
2.4.8. | Panasonic: Pyrolytic Graphite Sheet (PGS) |
2.4.9. | Progressions in Vertical Graphite |
2.4.10. | Graphite Pastes |
2.4.11. | Thermal Conductivity Comparison of Graphite TIMs |
2.4.12. | 2. Carbon Nanotube (CNT) - Introduction |
2.4.13. | Challenges with CNT-TIMs |
2.4.14. | Notable CNT TIM Examples from Commercial Players: Carbice |
2.4.15. | Notable CNT TIM Examples from Commercial Players: Fujitsu |
2.4.16. | Notable CNT TIM Examples from Commercial Players: Zeon |
2.4.17. | Notable CNT TIM Examples from Commercial Players: Hitachi Zosen |
2.4.18. | CNT TIM Fabrication |
2.4.19. | 3. Graphene - Overview |
2.4.20. | Achieving through-plane alignment |
2.4.21. | Graphene in Thermal Management: Application Roadmap |
2.4.22. | Graphene Heat Spreaders: Commercial Success |
2.4.23. | Graphene Heat Spreaders: Performance |
2.4.24. | Graphene Heat Spreaders: Suppliers Multiply |
2.4.25. | Nanotech Energy: EMI Armour Series - EIM/TIM |
2.4.26. | Graphene as an Additive to Thermal Interface Pads |
2.4.27. | Graphene and Graphite - High Performance Applications |
2.4.28. | T-Global: TG-P10050 |
2.4.29. | Metal Filled Polymer TIMs |
2.4.30. | Metal-based TIM - Overview |
2.4.31. | Recent Collaboration - Arieca and Nissan Chemical - Electrical Conductivity (1) |
2.4.32. | Recent Collaboration - Arieca and Nissan Chemical - Electrical Conductivity (2) |
2.4.33. | Recent Collaboration - Arieca and Nissan Chemical - Thermal Conductivity |
2.4.34. | Laminar Metal Form With High Softness (1) |
2.4.35. | Laminar Metal Form With High Softness (2) |
2.4.36. | Commercial Success |
2.4.37. | Indium Corporation - indium/gallium-based liquid metal TIMs (1) |
2.4.38. | Indium Corporation - indium/gallium-based liquid metal TIMs (2) |
2.4.39. | Indium Corporation - Full Metal TIMs |
2.4.40. | Boron Nitride Nanostructures |
2.4.41. | Introduction to Nano Boron Nitride |
2.4.42. | BNNT Players and Prices |
2.4.43. | BNNT Property Variations |
2.4.44. | BN Nanostructures in TIMs |
2.5. | TIM1 - Die-Attach and Substate-Attach |
2.5.1. | Comparison of TIM1 and TIM2 |
2.5.2. | Solder TIM1 and Liquid Metal |
2.5.3. | Solders as TIM1 |
2.5.4. | Solder TIM1 - Minimize Warpage and Delamination (1) |
2.5.5. | Solder TIM1 - Minimize Warpage and Delamination (2) |
2.5.6. | Trend Towards Sintering |
2.5.7. | Market News and Trends of Sintering |
2.5.8. | Ag Sintered TIM |
2.5.9. | Metal Sheet, Graphite Sheet, and Ag Sintered TIM |
2.5.10. | Process Steps for Applying Ag Sintered Paste |
2.5.11. | Die-Attach Solution - Summary of Materials (1) |
2.5.12. | Die-Attach Solution - Summary of Materials |
2.5.13. | Coefficient of Thermal Expansion (CTE) Comparison of Die-Attach and Substrate-Attach |
2.5.14. | Silver Sintering Paste |
2.5.15. | Properties and performance of solder alloys and conductive adhesives |
2.5.16. | Solder Options and Current Die Attach |
2.5.17. | Why Metal Sintering |
2.5.18. | Silver-Sintered Paste Performance |
2.5.19. | Cu Sintered TIM |
2.5.20. | TIM1 - Sintered Copper |
2.5.21. | Cu Sinter Materials |
2.5.22. | Cu Sintering: Characteristics |
2.5.23. | Reliability of Cu Sintered Joints |
2.5.24. | Graphene Enhanced Sintered Copper TIMs |
2.5.25. | Mitsui: Cu Sinter Half the Cost of Ag Sinter |
2.5.26. | Copper Sintering - Challenges |
2.5.27. | Porosity (%) of Metal Sinter Paste |
2.5.28. | Commercial Use Cases |
2.5.29. | Sintered Copper Die-Bonding Paste |
2.5.30. | Heraeus: Ag Sintering Pastes |
2.5.31. | Heraeus: Pressure or Pressure-less Pastes |
2.5.32. | Ag Sinter Process Conditions Summary |
2.6. | TIM Dispensing Equipment |
2.6.1. | Dispensing TIMs Introduction |
2.6.2. | Challenges for Dispensing TIM |
2.6.3. | Low-volume Dispensing Methods |
2.6.4. | High-volume Dispensing Methods |
2.6.5. | Compatibility of Meter, Mix, Dispense (MMD) System |
2.6.6. | TIM Dispensing Equipment Suppliers |
2.6.7. | Use cases - TIM PrintTM - Suzhou Hemi Electronics |
2.7. | Major TIM Acquisition |
2.7.1. | Arkema acquired Polytec PT |
2.7.2. | Henkel Acquires Bergquist |
2.7.3. | Parker Acquires Lord |
2.7.4. | DuPont Acquires Laird |
2.7.5. | Henkel Acquires Thermexit Business From Nanoramic |
2.7.6. | DuPont Failed to Acquire Rogers |
3. | TIM FILLERS |
3.1. | Key Trends on TIM Fillers for Different Applications |
3.2. | Summary - Pros and Cons of TIM Fillers (1) |
3.3. | Summary - Pros and Cons of TIM Fillers (2) |
3.4. | TIM filler cost comparison |
3.5. | Overview of Thermal Conductivity by Fillers |
3.6. | TIM Fillers - Huber Advanced Materials |
3.7. | Thermal Conductivity Comparison ATH and Al2O3 |
3.8. | Spherical Alumina |
3.9. | Alumina Fillers |
3.10. | Emerging Fillers and Adoption Barriers: Boron Nitride (BN) |
3.11. | Thermal Conductivity by Application |
3.12. | 3M BN: Thermal Conductivity Comparison |
3.13. | TIM Fillers - Momentive Technologies |
3.14. | Sumitomo Chemical |
3.15. | Filler and Polymer TIM - Overview |
3.16. | Filler Sizes |
3.17. | Carbon-based TIMs |
3.18. | Carbon Nanotube (CNT) |
3.19. | Challenges with CNT-TIMs |
3.20. | Notable CNT TIM Examples from Commercial Players: Carbice |
3.21. | CNT TIM Fabrication |
3.22. | Pre-Market: Carbon Fiber Based TIM from FujiPoly |
4. | THERMAL INTERFACE MATERIAL IN EV POWER ELECTRONICS |
4.1. | Overview |
4.1.1. | General Trend of TIMs in Power Electronics (1) |
4.1.2. | General Trend of TIMs in Power Electronics (2) |
4.1.3. | Where are TIMs used in EV Power Electronics |
4.1.4. | Summary of TIM2 Properties |
4.1.5. | BLT Comparison of TIM2 |
4.1.6. | Thermal Conductivity Comparison of TIM1s |
4.2. | TIM2 |
4.2.1. | Thermal Interface Material 2 - Summary |
4.2.2. | TIM2 - IDTechEx's Analysis on Promising TIM2 |
4.2.3. | Where are TIM2 Used in EV IGBTs? |
4.2.4. | TIMs in Infineon's IGBT |
4.2.5. | TIMs in onsemi IGBT Modules |
4.2.6. | Semikron Danfoss - TIM Overview |
4.2.7. | Semikron Danfoss - Graphite TIM |
4.3. | TIM2 in SiC MOSFET |
4.3.1. | TIMs in onsemi SiC MOSFET |
4.3.2. | Pre-Apped TIM in Infineon's CoolSiC |
4.3.3. | Infineon's SiC MOSFET Thermal Resistance |
4.3.4. | Wolfspeed |
4.3.5. | TIMs in Wolfspeed's SiC Power Modules |
4.3.6. | Solders as TIM2s - Package-Attach from Indium Corp |
4.4. | Removing Thermal Interface Material |
4.4.1. | Why the Drive to Eliminate the TIM |
4.4.2. | Thermal Grease: Other Shortcomings |
4.4.3. | EV Inverter Modules Where TIM has Been Eliminated (1) |
4.5. | Forecast |
4.5.1. | TIM Area Forecast by Technology: 2024-2034 (m2) |
4.5.2. | Yearly Market Size of TIMs Forecast: 2024-2034 (US$ Millions) |
5. | TIM IN EV BATTERY |
5.1. | Thermal interface materials for EV battery packs |
5.1.1. | Introduction to thermal interface materials for EVs |
5.1.2. | TIM pack and module overview |
5.1.3. | TIM application - pack and modules |
5.1.4. | TIM application by cell format |
5.1.5. | Key properties for TIMs in EVs |
5.1.6. | Gap pads in EV batteries |
5.1.7. | Switching to gap fillers from pads |
5.1.8. | Dispensing TIMs Introduction and Challenges |
5.1.9. | Thermally conductive adhesives in EV batteries |
5.1.10. | Material options and market comparison |
5.1.11. | The silicone dilemma for the automotive market |
5.1.12. | Thermal interface material fillers for EV batteries |
5.1.13. | TIM filler comparison and adoption |
5.1.14. | Thermal conductivity comparison of suppliers |
5.1.15. | Factors impacting TIM pricing |
5.1.16. | TIM pricing by supplier |
5.2. | TIM in cell-to-pack designs |
5.2.1. | What is cell-to-pack? |
5.2.2. | Drivers and challenges for cell-to-pack |
5.2.3. | What is cell-to-chassis/body? |
5.2.4. | Cell-to-pack and Cell-to-body Designs Summary |
5.2.5. | Gravimetric Energy Density and Cell-to-pack Ratio |
5.2.6. | Outlook for Cell-to-pack & Cell-to-body Designs |
5.2.7. | Gap filler to thermally conductive adhesives |
5.2.8. | Thermal conductivity shift |
5.2.9. | TCA requirements |
5.2.10. | Servicing/ Repair and Recyclability |
5.2.11. | EU Regulations and Recyclability |
5.3. | TIM players |
5.3.1. | Bostik |
5.3.2. | DEMAK |
5.3.3. | Dow |
5.3.4. | DuPont |
5.3.5. | ELANTAS |
5.3.6. | Elkem |
5.3.7. | Epoxies Etc. |
5.3.8. | Evonik |
5.3.9. | H.B. Fuller |
5.3.10. | Henkel |
5.3.11. | Momentive |
5.3.12. | Parker Lord |
5.3.13. | Polymer Science |
5.3.14. | Sekisui |
5.3.15. | Shin-Etsu |
5.3.16. | Wacker Chemie |
5.3.17. | Wevo Chemie |
5.4. | TIM EV use cases |
5.4.1. | Audi e-tron |
5.4.2. | BMW iX3 |
5.4.3. | BYD Blade |
5.4.4. | Chevrolet Bolt |
5.4.5. | Fiat 500e |
5.4.6. | Ford Mustang Mach-E |
5.4.7. | Hyundai IONIQ 5/Kia EV6 |
5.4.8. | MG ZS EV |
5.4.9. | Nissan Leaf |
5.4.10. | Porsche Taycan |
5.4.11. | Smart Fortwo (Mercedes) |
5.4.12. | Rivian R1T |
5.4.13. | Tesla Model 3/Y |
5.4.14. | Tesla 4680 pack |
5.4.15. | CATL CTP3.0 Qilin Pack |
5.4.16. | CATL CTP3.0 Qilin Pack - TIM Estimation |
5.4.17. | EV use-case summary |
5.4.18. | TIM use by vehicle and by year |
5.5. | TIM forecasts |
5.5.1. | TIM demand per vehicle |
5.5.2. | TIM Mass Forecast for EV batteries by TIM type: 2021-2034 (kg) |
5.5.3. | TIM Market Size Forecast for EV Batteries by TIM Type: 2021-2034 (US$) |
5.5.4. | TIM Forecast for EV Batteries by Vehicle Type: 2021-2034 (kg and US$) |
6. | THERMAL INTERFACE MATERIALS IN DATA CENTERS |
6.1. | TIM in data center introduction |
6.1.1. | Thermal Interface Materials in Data Centers |
6.1.2. | Common Types of TIMs in Data Centers - Line Card Level |
6.1.3. | TIMs in Data Centers - Line Card Level - Transceivers |
6.1.4. | TIMs in Server Boards |
6.1.5. | Server Board Layout |
6.1.6. | TIMs for Data Center - Server Boards, Switches and Routers |
6.1.7. | Data Center Switch Players |
6.2. | TIM area estimation - use cases |
6.2.1. | How TIMs are Used in Data Center Switches - FS N8560-32C 32x 100GbE Switch |
6.2.2. | WS-SUP720 Supervisor 720 Module |
6.2.3. | Ubiquiti UniFi USW-Leaf Switch |
6.2.4. | FS S5850-48S6Q 48x 10GbE and 6x 40GbE Switch |
6.2.5. | Cisco Nexus 7700 Supervisor 2E module |
6.2.6. | Nvidia - Grace Hopper TIM |
6.2.7. | Nvidia - Grace Blackwell GPU and Switch Tray |
6.2.8. | TIM Area: SuperServer SYS-221GE-TNHT-LCC |
6.2.9. | ARES-WHI0 |
6.2.10. | Estimating the TIM Areas in Server Boards |
6.2.11. | Area of TIM per Switch |
6.2.12. | TIM Area for Leaf and Spine Switch |
6.2.13. | TIM Consumption in Data Center Power Supplies |
6.2.14. | TIMs for Power Supply Converters (1): AC-DC and DC-DC |
6.2.15. | Data Center Power Supply System |
6.2.16. | TIMs for Data Center Power Supplies (2) |
6.2.17. | TIMs for Data Center Power Supplies (3) |
6.2.18. | TIMs in Data Center Power Supplies (4) |
6.2.19. | How TIMs are Used in Data Center Power Supplies (5) |
6.2.20. | How TIMs are Used in data center power supply (6) |
6.2.21. | TIMs for Data Centers - Power Supply Converters |
6.2.22. | Differences Between TIM Forms - (1) |
6.2.23. | Differences Between TIM Forms - (2) |
6.3. | Novel TIMs in data centers |
6.3.1. | Novel material - Laminar Metal Form with High Softness (1) |
6.3.2. | Novel material - Laminar Metal Form with High Softness (2) |
6.3.3. | Smart High Tech - Graphite TIMs |
6.3.4. | TIM Trends in Data Centers |
6.3.5. | TIMs in immersion cooling |
6.4. | Forecast |
6.4.1. | TIM Area Forecast in Server Boards: 2022-2034 (m2) |
6.4.2. | Data Center Switch Forecast: 2022-2034 |
6.4.3. | Number of Server Forecast: 2022-2034 |
6.4.4. | TIM Area Forecast for Leaf and Spine Switch: 2022-2034 (m2) |
6.4.5. | TIM Area Forecast by Data Center Components: 2021-2034 (m2) |
6.4.6. | TIM Mass Forecast by Data Center Components: 2021-2034 (kg) |
7. | THERMAL INTERFACE MATERIALS FOR ADAS |
7.1. | Introduction |
7.1.1. | Typical Sensor Suite for Autonomous Cars |
7.1.2. | The Sensor Trifactor |
7.1.3. | Sensors and Their Purpose |
7.2. | Thermal Management in ADAS Sensors |
7.2.1. | Locations for Thermal Management Materials |
7.2.2. | Thermal Interface Materials for ADAS |
7.2.3. | Thermal Interface Materials for ADAS Sensors |
7.2.4. | Cameras |
7.2.5. | Camera Anatomy |
7.2.6. | Thermal Interface Materials for ADAS Cameras |
7.2.7. | Bosch ADAS Camera |
7.2.8. | Tesla's Triple Lens Camera |
7.2.9. | ZF S-Cam4 Triple and Single Lens Cameras |
7.2.10. | Radar |
7.2.11. | Radar Anatomy |
7.2.12. | Board Trends |
7.2.13. | Radars are Getting Smaller |
7.2.14. | Thermal Interface Materials for ADAS Radars |
7.2.15. | TIM with Radar Board Trends |
7.2.16. | Bosch 77 GHz Radar |
7.2.17. | Bosch Mid-Range Radar |
7.2.18. | MANDO Long-Range Radar |
7.2.19. | DENSO DNMWR006 Radar |
7.2.20. | DENSO DNMWR010 Radar |
7.2.21. | GM Adaptive Cruise Control Radar |
7.2.22. | LiDAR |
7.2.23. | LiDAR Thermal Considerations |
7.2.24. | Thermal for LiDAR |
7.2.25. | Thermal Interface Materials for ADAS LiDAR |
7.2.26. | 3irobotics Delta3 |
7.2.27. | Continental Short-Range LiDAR |
7.2.28. | Ouster OS1-64 LiDAR |
7.2.29. | Valeo Scala LiDAR |
7.2.30. | Possible New TIM Locations: Laser Driver Dies |
7.2.31. | ECUs/Computers |
7.2.32. | Computers and ECUs in ADAS |
7.2.33. | Lack of TIMs in Previous ECU Designs |
7.2.34. | Audi zFAS Computer |
7.2.35. | Tesla's Computer Generations |
7.2.36. | Tesla's Liquid-Cooled MCU/ECU |
7.2.37. | Thermal Interface Materials in the ECU |
7.2.38. | ADAS Chip Power Progression |
7.2.39. | 3M — TIM and EMI for ECUs |
7.2.40. | Henkel — ECU Case Study |
7.2.41. | Audi zFAS |
7.2.42. | Tesla HW 2.5 |
7.2.43. | Tesla HW 3.0 |
7.2.44. | TIM Players in ADAS |
7.2.45. | 3M |
7.2.46. | Dow |
7.2.47. | Fujipoly |
7.2.48. | GLPOLY |
7.2.49. | Henkel — TIM for Cameras |
7.2.50. | Henkel — TIM for Radars |
7.2.51. | Laird — ADAS TIMs |
7.2.52. | Momentive |
7.2.53. | Parker — TIMs for Cameras |
7.2.54. | Sekisui |
7.2.55. | Shin Etsu |
7.2.56. | Summary of Performance for TIM Players |
7.3. | TIM Requirements and Total Forecasts for ADAS Sensors |
7.3.1. | TIM Requirements for ADAS Components |
7.3.2. | TIM Properties by Application |
7.3.3. | TIM Requirements for ADAS Components |
7.3.4. | TIM Area Forecast for ADAS: 2020-2034 (m2) |
7.3.5. | TIM: Price Analysis |
7.3.6. | TIM Revenue Forecast for ADAS: 2020-2034 ($ Millions) |
7.3.7. | Die Attach for ADAS |
7.3.8. | Die Attach for Image Sensors |
7.3.9. | Radar IC Packages |
7.3.10. | How Important is Die Attach for ADAS Sensors? |
7.3.11. | ESI Automotive — Die Attach for Radar |
7.3.12. | Henkel — Die Attach for ADAS |
7.3.13. | Heraeus — ECU Materials |
7.3.14. | Summary of Die Attach for ADAS Sensors |
7.3.15. | Die Attach Area Forecast for Key Components Within ADAS Sensors: 2020-2034 (m2) |
8. | THERMAL INTERFACE MATERIAL FOR 5G |
8.1. | Overview |
8.1.1. | Anatomy of a Base Station: Summary |
8.1.2. | Baseband Processing Unit and Remote Radio Head |
8.1.3. | Path Evolution from Baseband Unit to Antenna |
8.1.4. | TIM Types in 5G |
8.1.5. | Value Proposition for Liquid TIMs |
8.2. | Addressing EMI and Thermal Challenges in 5G |
8.2.1. | EMI is More Challenging in 5G |
8.2.2. | Antenna De-sense |
8.2.3. | Multifunctional TIMs as a Solution |
8.2.4. | EMI Gaskets |
8.2.5. | Laird |
8.2.6. | Schlegel - TIM and EMI |
8.2.7. | TIM Combined with EMI Shielding Properties |
8.3. | TIM Suppliers for 5G |
8.3.1. | 3M - Boron Nitride Fillers |
8.3.2. | GLPOLY |
8.3.3. | Henkel - Liquid TIMs for Data & Telecoms |
8.3.4. | Honeywell |
8.3.5. | Laird (DuPont) |
8.3.6. | Momentive |
8.3.7. | NeoGraf |
8.3.8. | Parker |
8.3.9. | TIM Suppliers Targeting 5G Applications |
8.3.10. | TIM Properties and Players for 5G Infrastructure |
8.4. | TIMs for Antenna |
8.4.1. | TIM Example: Samsung 5G Access Point |
8.4.2. | TIM Example: Samsung Outdoor CPE Unit |
8.4.3. | TIM Example: Samsung Indoor CPE Unit |
8.4.4. | TIM Area Forecast for 5G Antenna by Station Size: 2020-2034 (m2) |
8.4.5. | TIM Area Forecast for 5G Antenna by Station Frequency: 2020-2034 (m2) |
8.5. | TIMs for BBU |
8.5.1. | The 6 Components of a Baseband Processing Unit |
8.5.2. | Thermal Material Opportunities for the BBU |
8.5.3. | Examples of 5G BBUs |
8.5.4. | TIM in BBUs |
8.5.5. | BBU Parts I: Main Control Board |
8.5.6. | BBU Parts II & III: Baseband Processing Board & Transmission Extension Board |
8.5.7. | BBU Parts IV & V: Radio Interface Board & Satellite-card Board |
8.5.8. | BBU parts VI: TIM Area in the Power Supply Board |
8.5.9. | Summary |
8.5.10. | TIM Area Forecast for 5G BBU: 2020-2034 (m2) |
8.6. | TIMs for 5G Power Supplies |
8.6.1. | Power Consumption in 5G |
8.6.2. | Challenges to the 5G Power Supply Industry |
8.6.3. | The Dawn of Smart Power? |
8.6.4. | GaN Systems - GaN Power Supply and Wireless Power |
8.6.5. | Power Consumption Forecast for 5G: 2020-2034 (GW) |
8.6.6. | TIM Area Forecast for Power Supplies: 2020-2034 (m2) |
8.7. | Total TIM Forecasts for 5G |
8.7.1. | TIM Area Forecast for 5G Stations by Component: 2020-2034 (m2) |
8.7.2. | TIM Area Forecast for 5G Stations by Microstation Type: 2020-2034 (m2) |
9. | THERMAL INTERFACE MATERIALS AND HEAT SPREADERS IN CONSUMER ELECTRONICS |
9.1. | Introduction |
9.2. | Thermal Management Differences: 4G vs 5G Smartphones |
9.3. | Overview of Thermal Management Materials Application Areas |
9.4. | Use-case: Samsung Galaxy 3 |
9.5. | Use-case: Apple iPhone 5 |
9.6. | Use-case: Samsung Galaxy S6 |
9.7. | Use-case: Samsung Galaxy S7 (1) |
9.8. | Use-case: Samsung Galaxy S7 (2) |
9.9. | Use-case: Samsung Galaxy S6 and S7 TIM Area Estimates |
9.10. | Use-case: Apple iPhone 7 |
9.11. | Use-case: Apple iPhone X |
9.12. | Use-case: Samsung Galaxy S9 (1) |
9.13. | Use-case: Samsung Galaxy S9 (2) |
9.14. | Galaxy Note 9 Carbon Water Cooling System |
9.15. | Use-case: Oppo R17 |
9.16. | Use-case: Samsung Galaxy S10 and S10e |
9.17. | Use-case: LG v50 ThinQ 5G |
9.18. | Use-case: Samsung Galaxy S10 5G |
9.19. | Use-case: Samsung Galaxy Note 10+ 5G |
9.20. | Use-case: Apple iPhone 12 |
9.21. | Use-case: LG v60 ThinQ 5G |
9.22. | Use-case: Nubia Red Magic 5G |
9.23. | Use-case: Samsung Galaxy S20 5G |
9.24. | Use-case: Samsung Galaxy S21 5G |
9.25. | Use-case: Samsung Galaxy Note 20 Ultra 5G |
9.26. | Use-case: Huawei Mate 20 X 5G |
9.27. | Use-case: Sony Xperia Pro |
9.28. | Use-case: Apple iPhone 13 Pro |
9.29. | Use-case: Google Pixel 6 Pro |
9.30. | Samsung Galaxy S22 |
9.31. | iPhone 14 Pro |
9.32. | Samsung Galaxy S23 |
9.33. | Use Case: iPhone 15 - reduced heat spreader area |
9.34. | Smartphone Thermal Material Estimate Summary |
9.35. | Trends in Smartphone Thermal Material Utilization |
9.36. | Graphitic Heat Spreaders |
9.37. | Emerging Advanced Material Solutions |
9.38. | Insulation Material |
9.39. | Insulation Material (2) |
9.40. | Smartphone Unit Forecast: 2012-2034 |
9.41. | TIM and Heat Spreader Market Size Forecast in Smartphones: 2012-2034 (US$) |
10. | TIMS IN EMI SHIELDING |
10.1. | Overview |
10.1.1. | Introduction to EMI shielding |
10.1.2. | EMI use-cases |
10.1.3. | Considerations of TIMs in EMI Shielding |
10.1.4. | EMI Shielding - Dielectric Constant |
10.2. | EMI and TIMs in ADAS |
10.2.1. | Applications of TIMs in EMI Shielding for ADAS Radars |
10.2.2. | Laird's - CoolShield and CoolShield-Flex Series |
10.2.3. | Density and Thermal Conductivity of TIMs for Radar |
10.2.4. | 3M — TIM and EMI for ECUs |
10.3. | EMI and TIMs in 5G |
10.3.1. | EMI is More Challenging in 5G |
10.3.2. | EMI Shielding - Next Growth Driver for TIMs |
10.3.3. | Antenna De-sense |
10.3.4. | Multifunctional TIMs as a Solution |
10.3.5. | Dual functionalities - heat dissipation and EMI shielding - Laird's CoolZorb (1) |
10.3.6. | Dual functionalities - heat dissipation and EMI shielding - Laird's CoolZorb (2) |
10.3.7. | EMI Gaskets |
10.3.8. | Laird |
10.3.9. | Schlegel - TIM and EMI |
10.3.10. | TIM Combined with EMI Shielding Properties |
10.4. | EMI and TIMs in other applications |
10.4.1. | Consumer Electronics - Graphite |
10.4.2. | Use-Case: Synthetic Graphite Sheet - DSN |
10.4.3. | Price Comparison of Graphite Sheets |
10.4.4. | Use Case: Panasonic G-TIM (1) |
10.4.5. | Use Case: Panasonic G-TIM (2) |
10.4.6. | Players - EMI TIMs |
11. | FORECAST SUMMARY AND CONCLUSION |
11.1. | TIM Area Forecast by Application: 2022-2034 (m2) |
11.2. | TIM Mass Forecast by Application: 2022-2034 (kg) |
11.3. | TIM Revenue Forecast by Application: 2022-2034 (US$ Millions) |
12. | COMPANY PROFILES |
12.1. | 3M Electronics Materials |
12.2. | ADA Technologies |
12.3. | Alpha Assembly |
12.4. | AluChem |
12.5. | AOS Thermal Compounds |
12.6. | Arieca |
12.7. | Aztrong |
12.8. | Bando |
12.9. | bdtronic |
12.10. | BestGraphene |
12.11. | BNNT |
12.12. | BNNT Technology Limited |
12.13. | Cambridge Nanotherm |
12.14. | Carbice Corporation |
12.15. | CondAlign |
12.16. | Dexerials |
12.17. | Dow Corning |
12.18. | Dowa Electronics Materials, Co., Ltd |
12.19. | DuPont: Thermal Materials for Future Battery Designs |
12.20. | Dynex Semiconductor (CRRC): EV Power Electronics |
12.21. | Enerdyne Solutions |
12.22. | Enerdyne Solutions |
12.23. | Fujipoly: Fire Protection Materials for Electric Vehicle Batteries |
12.24. | GCS Thermal |
12.25. | Henkel: microTIM and data centers |
12.26. | Heraeus: Solutions for EV Power Electronics |
12.27. | Hitek Electronic Materials |
12.28. | Huber Martinswerk: Thermal Additives |
12.29. | Huber Martinswerk: Thermal Additives |
12.30. | HyMet Thermal Interfaces |
12.31. | HyMet Thermal Interfaces |
12.32. | Indium Corporation |
12.33. | Inkron |
12.34. | KB Element |
12.35. | KULR Technology |
12.36. | Kyocera: 5G Materials |
12.37. | Laird |
12.38. | Laird Performance Materials: Thermal and EMI Materials for Radar |
12.39. | LiquidCool Solutions — Chassis-Based Immersion Cooling |
12.40. | LiSAT |
12.41. | MacDermid Alpha |
12.42. | Mitsubishi Materials |
12.43. | Mitsui Mining & Smelting (Advanced Semiconductor Packaging) |
12.44. | Nanoramic Laboratories |
12.45. | NeoGraf Solutions |
12.46. | Nolato Silikonteknik |
12.47. | NTherma |
12.48. | Parker Lord: Dispensable Gap Fillers |
12.49. | Polymatech |
12.50. | Schlegel Electronic Materials |
12.51. | Shinko: Carbon Nanotube Thermal Interface Materials |
12.52. | Smart High Tech |
12.53. | Stokvis Tapes |
12.54. | Sumitomo Chemical Co., Ltd |
12.55. | The Sixth Element |
12.56. | Thermexit (Nanoramic Labs): high thermal conductivity materials |
12.57. | WACKER SILICONES - Thermal Materials for EVs |
12.58. | WEVO Chemie: Battery Thermal Management Materials |
12.59. | Wieland Group |
12.60. | X2F: Technology for Processing Highly Filled Polymers |
12.61. | Zeon: High-Performance Thermal Interface Material |