Are Silicon Anodes the Key to Mass EV Adoption?
2024 5월21일
Dr Alex Holland
Maximizing energy density has been one key area of focus in electric vehicle battery development. Optimizations in cell and battery pack designs, alongside the use of higher nickel NMC and NCA cathodes, have led to steady improvement in battery energy density over the past 10-15 years. The energy density limit from current design and material iterations has largely been maximized. However, a promising contender is emerging on the horizon to offer a step-change improvement - silicon. IDTechEx forecast the market for silicon anode material for Li-ion batteries to exceed US$24 billion by 2034.
This article draws from the new IDTechEx report, "Advanced Li-ion Battery Technologies 2024-2034: Technologies, Players, Forecasts", which includes analysis on the latest in silicon anode developments.
Silicon anode performance benefits
Silicon has a theoretical capacity of nearly 3600 mAh/g (at room temperature), offering the possibility to significantly boost energy densities by replacing graphite, which is used as the anode material in the vast majority of Li-ion batteries. By replacing graphite, which has a capacity of approximately 360 mAh/g, with silicon, cell-level energy densities in excess of 400 Wh/kg and 1000 Wh/l become feasible, with the potential to nearly double the energy density of state-of-the-art commercial cells in 2024. This leap in energy density could translate into electric vehicles with twice the range or electronic devices with twice the runtime.
But the benefits of silicon extend beyond just capacity and energy density. Many silicon anode companies are reporting improved power and fast charging capabilities, an increasingly important performance metric for electric vehicles, as well as other applications such as power tools or consumer devices. Additionally, the more positive voltage of silicon compared to graphite helps reduce the risk of lithium plating, enhancing battery safety, another increasingly important concern for the industry.
Commercialization efforts ramping up
Currently, silicon oxides can only be used at relatively low weight percentages, <10%, but tens of companies, both large and small, are racing to develop advanced silicon anode materials that can enable higher silicon percentages in batteries. Silicon-dominant compositions remains the aim for a number of players. The battery industry has taken notice of silicon's potential. IDTechEx estimate that over US$4 billion of investment has gone into silicon anode start-ups. Some of this is now starting to go toward the expansion of manufacturing capabilities, capacities, and supply chains. Importantly, the materials and solutions being developed by some of these companies are also starting to be qualified and deployed. Sila Nano have had materials used in the Whoop fitness wearable, Amprius have deployed batteries in drones and high-altitude pseudo satellites (HAPS), while Lightning Motors will offer e-motorcycles using Enevate's technology. Automotive OEMs have also taken note of the promise of silicon anodes, with the likes of Daimler, Porsche, and GM investing and partnering with silicon anode companies.
Cumulatively, funding into silicon anode start-ups and companies has exceeded US$4 billion since 2010. Source: IDTechEx
Challenges remain
However, challenges remain to the widespread commercialization of silicon beyond its use as an additive. Silicon's significant expansion during cycling can lead to issues such as excessive electrolyte consumption, electrode pulverization, and loss of electrical contact, hence the use of silicon at relatively low percentages in the anode. Significant effort has gone into overcoming these hurdles, and data being reported suggests that cycle lives of up to 1000 cycles are attainable, making silicon broadly suitable for electric cars.
Beyond cycle life, shelf life remains a concern, while in the short-medium term, silicon anode materials will most likely continue to come in at a price premium over graphite on a US$/kWh basis. This may restrict their deployment to applications where price sensitivity is lower, such as high-end electric vehicles, military applications, or some electronic devices.
Conclusion
In conclusion, advanced silicon anode materials hold immense promise for improving key aspects of battery performance, but challenges such as cycle life, shelf life, and, importantly, cost must be addressed for widespread adoption. Nonetheless, the deployment of higher percentage silicon content anodes in various applications looks imminent. Increasing scale and continued innovation also provide optimism for driving down the costs of silicon-based anode materials, making them accessible for important mass-market EV segments. For IDTechEx's coverage and analysis on the variety of silicon anode technologies, 30+ players developing materials and solutions, and the latest commercialization efforts, see their report "Advanced Li-ion Battery Technologies 2024-2034: Technologies, Players, Forecasts".
To find out more about this report, including downloadable sample pages, please visit www.IDTechEx.com/AdvLithium.
For the full portfolio of batteries and energy storage market research from IDTechEx, please see www.IDTechEx.com/Research/ES.
IDTechEx provides trusted independent research on emerging technologies and their markets. Since 1999, we have been helping our clients to understand new technologies, their supply chains, market requirements, opportunities and forecasts. For more information, contact research@IDTechEx.com or visit www.IDTechEx.com.